
Lustre Locking overview

Oleg Drokin

July 24, 2017

* Some names and brands may be claimed as the property of others.

Lustre DLM from 10,000 ft

• Based on ideas from VMS distributed lock manager

• Hence some confusing names like AST

• Every server has a namespace for objects it holds

• Based on server type can be data or metadata

• Every server is the authority about its own namespace

• No quorums.

2

Lustre DLM from 10,000 ft, cont’d

• Clients have limited visibility into server namespace

• Only locks they have been granted

3

Lustre DLM from 10,000 ft, cont’d

4

• C code only (not even C++)

• Highly kernel centric

• But you can teach it non-standard tricks about your code

• WINE uses it too

• Windows support is also likely under question

• But that’s mostly all C++ code anyway, so a moot point.

• Not on the approved static analyzers list

• But that does not mean you cannot run it, just run it in addition as
a supplement aid.

5

Why do we need the locks?

• Concurrency control

• This is obvious

• Cache control

• While a client holds some lock, corresponding object cannot
change or cannot be touched at all.

• This is how a lot of POSIX compliance is done while having client-
side write cache

6

Special glimpse AST

• Write cache and file sizes don’t mix easily.

• Write from job nodes while another one has impatient user doing ls –
l watching the size grow problem

• We certainly don’t want to be flushing all dirty pages for this.

• Solution: Glimpse AST to ask the client “hey, what’s the highest offset
in this file”

• Server only sends this message to the highest offset lock holder

7

Lock lifecycle on a client

• Ask for lock due to some operation being performed

• Server eventually grants the lock

• Client performs the operation it wanted the lock for

• Client retains the “unused” lock in local LRU

• Next time we need this same lock, can just get it there

• Eventually lock is too stale and returned to the server

• Or there’s a conflict because another client wants to touch same
object

• Client receives a “blocking AST” and releases the lock.

• Actual lock release is called lock cancel in Lustre.

8

Client lock LRU

• Used to be 100*NUM_CPUS per client namespace by default

• ldlm.$NAMESPACE.lru_size control

• Setting that to 0 (new default) enables “lru resize”

• Client caches as many locks as it could, unless told by server not to.

• This tends to use a lot of memory on servers sometimes starving
caches – so something to look for.

• Old locks “= older than 65 minutes” (used to be 10 hours) are
automatically canceled

9

Client lock LRU

• Benefits:

• Much faster to get a locally cached lock

• Drawbacks:

• Much slower for a different client to get a conflicting lock due to all
the RPCs.

• More locks cached = more memory used

• Helps a lot on login nodes

• Computes between jobs may not benefit from stale LRUs

• More people now opt to clear lock LRUs (and pagecache) between
jobs

10

Useful server memory tunings

• Starting from 2.8.0 release you can set limits on ldlm memmory use
on servers

• ldlm.lock_limit_mb (in megabytes) – hard limit

• Default 30Mb

• ldlm.lock_reclaim_threshold_mb – start to ask clients to release
locks.

• Default 20Mb

• If you have a lot of RAM, it makes sense to increase these values

11

Blocked lock rpc flow

• Server sends Blocking AST

• Waits for client reply for ~7 seconds. Nowadays also retries

• If no confirmation -> client is evicted

• Once the confirmation is received lock is placed onto the waiting list

• Client is expected to finish IO and cancel the lock in reasonable
time

• Every IO request under this lock prolongs the lock timeout

• If timeout expires client is evicted.

12

Commonly seen errors

• Failure to reply to AST

• Client dead or network partition most likely

13

LustreError: 12408:0:(ldlm_lockd.c:687:ldlm_handle_ast_error()) ### client (nid 0@lo) failed to reply to
blocking AST (req@ffff880051aa6520 x1551685286400384 status 0 rc -5), evict it ns: mdt-lustre-
MDT0000_UUID

LustreError: 0:0:(ldlm_lockd.c:358:waiting_locks_callback()) ### lock callback timer expired after 101s: evicting
client at 149.165.238.1@tcp ns: mdt-ffff881837d4e000 lock: ffff881d6af0c000/0x78c70fdb970d7e0 lrc: 3/0,0
mode: PR/PR res: 8589943942/77226 bits 0x3 rrc: 13 type: IBT flags: 0x4000020 remote: 0xe213f1ffc604946c
expref: 54330 pid: 11173 timeout: 4825691675

• Failure to cancel lock in time

• But why did it fail? Many possible reasons

• Network slowdowns, packet loss, client busy or dead, …

Commonly seen errors

• Failure to reply to AST

• Client dead or network partition most likely

14

LustreError: 12408:0:(ldlm_lockd.c:687:ldlm_handle_ast_error()) ### client (nid 0@lo) failed to reply to
blocking AST (req@ffff880051aa6520 x1551685286400384 status 0 rc -5), evict it ns: mdt-lustre-
MDT0000_UUID

LustreError: 0:0:(ldlm_lockd.c:358:waiting_locks_callback()) ### lock callback timer expired after 101s: evicting
client at 149.165.238.1@tcp ns: mdt-ffff881837d4e000 lock: ffff881d6af0c000/0x78c70fdb970d7e0 lrc: 3/0,0
mode: PR/PR res: 8589943942/77226 bits 0x3 rrc: 13 type: IBT flags: 0x4000020 remote: 0xe213f1ffc604946c
expref: 54330 pid: 11173 timeout: 4825691675

• Failure to cancel lock in time

LustreError: 20011:0:(ldlm_lockd.c:2074:ldlm_cancel_handler()) ldlm_cancel from 149.165.238.1@tcp arrived
at 1394488331 with bad export cookie 543933852487261410

• A clear sign there was some network or ingestion delay that
prevented this lock from reaching server in time.

Commonly seen errors 2

• Failure to reply to AST

• Client dead or network partition most likely

15

LustreError: 12408:0:(ldlm_lockd.c:687:ldlm_handle_ast_error()) ### client (nid 0@lo) failed to reply to
blocking AST (req@ffff880051aa6520 x1551685286400384 status 0 rc -5), evict it ns: mdt-lustre-
MDT0000_UUID

LustreError: 0:0:(ldlm_lockd.c:358:waiting_locks_callback()) ### lock callback timer expired after 101s: evicting
client at 149.165.238.1@tcp ns: mdt-ffff881837d4e000 lock: ffff881d6af0c000/0x78c70fdb970d7e0 lrc: 3/0,0
mode: PR/PR res: 8589943942/77226 bits 0x3 rrc: 13 type: IBT flags: 0x4000020 remote: 0xe213f1ffc604946c
expref: 54330 pid: 11173 timeout: 4825691675

• Failure to cancel lock in time

• But why did it fail? Many possible reasons

• Network slowdowns, packet loss, client busy or dead, …

Questions?

Questions?

16

